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This paper describes a systematic method for developing model-based controllers for solid-oxide fuel
cell (SOFC) systems. To enhance the system efficiency and to avoid possible damages, the system must
be controlled within specific operating conditions, while satisfying a load requirement. Model predictive
control (MPC) is a natural choice for control implementation. However, to implement MPC, a low-order
model is needed that captures the dominant dynamic behavior over the operating range. A linear param-
eter varying (LPV) model structure is developed and applied to obtain a control-oriented dynamic model
ubular SOFC
hysical modeling
odel predictive control
onlinear system identification
inear parameter varying models

of the SOFC stack. This approach effectively reduces a detailed physical model to a form that is compat-
ible with MPC. The LPV structure includes nonlinear scheduling functions that blend the dynamics of
locally linear models to represent nonlinear dynamic behavior over large operating ranges. Alternative
scheduling variables are evaluated, with cell current being shown to be an appropriate choice. Using the
reduced-order model, an MPC controller is designed that can respond to the load requirement over a
wide range of operation changes while maintaining input–output variables within specified constraints.

the L
To validate the approach,

. Introduction

This paper is the second of a two-part paper that develops a
odel-based approach for control of a tubular solid-oxide fuel

ell (SOFC) system. The companion paper develops the physical
odel and applies linear model-reduction techniques near par-

icular steady-state operating points (OPs) [1]. The present paper
ontinues to use the same physical model, but develops linear
arameter varying (LPV) methods to extend the reduced models
ver large ranges of operating conditions. Finally, the reduced mod-
ls are used to develop and demonstrate model predictive control
MPC).

.1. SOFC systems

Fuel cells are devices that enable the direct conversion of chem-
cal energy into electrical energy, with a theoretical conversion
fficiency that can be much higher than for heat engines [2]. As

llustrated in Fig. 1, the systems are an integrated combination
f contributing components including the fuel cell stack, together
ith balance of plant (BOP) components that include air blowers,

uel pump, fuel reformer (e.g., catalytic partial oxidation (CPOX)),

∗ Corresponding author. Tel.: +1 303 273 3641; fax: +1 303 273 3602.
E-mail address: tvincent@mines.edu (T.L. Vincent).
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PV-based MPC controller is applied to the high-order physical model.
© 2010 Elsevier B.V. All rights reserved.

tail-gas combustor, heat exchangers, power conditioning unit, etc.
[3].

In a system such as the one illustrated in Fig. 1, vaporized fuel
and air are converted within a CPOX reactor to produce a syngas
mixture (i.e., a mixture of H2, H2O, CO, CO2, and N2). The syngas
enters the anode side of the SOFC stack. Preheated air enters the
cathode side of the SOFC stack. Air and unspent fuel leaving the
stack are mixed and burned in a catalytic tail-gas combustor. Hot
gases leaving the tail-gas burner are used in a recuperating heat
exchanger to preheat the air entering the SOFC stack. Raw power
from the SOFC is processed through power electronics before being
delivered to the application load.

1.2. Why is a control system necessary?

To operate at multiple power levels, fuel cells require a control
system to balance the fuel and air supply, as well as the electri-
cal load. This is important both to achieve high efficiency, as well
as to avoid operating conditions that can damage the fuel cell, such
as excessive temperature or temperature gradients, catalyst coking,
and anode reoxidation. Especially for small portable power applica-

tions, the SOFC must deliver power profiles that meet the transient
load demands. Consider, for example, an auxiliary power unit (APU)
that is designed to satisfy the hotel loads for the sleeper cab on a
long-haul truck. Depending upon the activities and appliances in
the cab, the power demanded from the APU can vary considerably

dx.doi.org/10.1016/j.jpowsour.2010.06.075
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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on a specific LPV model structure that continuously blends multi-
ig. 1. Schematic of an SOFC system that is typical for mobile applications such as
n APU.

ver time. Although such systems are usually designed with bat-
ery storage and power electronics that seek to limit the transients
equired from the SOFC, the fuel-cell system must still respond to a
ange of transients. Moreover, if a control system can enable the fuel
ell to respond to load changes more quickly, storage requirements
re reduced, decreasing overall system cost.

Any control system depends upon actuation and sensing. SOFC
ctuation is usually accomplished through a combination of cell
perating voltage, fuel flow rate, and air flow rate. Sensing is usu-
lly accomplished with thermocouples that measure temperature.
ressure and flow-rate measurements are valuable, if available.
easuring chemical composition is especially valuable but usually

ifficult and expensive. Thus, chemical information usually must be
nferred from other less-expensive measurements. There are usu-
lly practical constraints on actuation and on system performance
o avoid damage to the cell. For example, the operating voltage may
e constrained to remain above 0.6 V. The cell temperature may be
onstrained to remain within a specified range. Fuel utilization is
sually constrained such that some unspent fuel remains in the
node exhaust. A sophisticated control system is needed to meet
onstraints on actuation and response while guiding the system
hrough power-demand transients [4].

.3. Prior modeling research

For a model to be useful for control purposes, it must be of
ow complexity and yet capture the dominant dynamic behavior
f the system. Control-oriented modeling ranges from first princi-
les physics-based component modeling using flow characteristics,
ass- and energy-balances, simple diffusion and heat equations to

ata-driven methods that fit low-order empirical models to exper-
mental data.

Examples of physics-based low-order modeling include, Hall
nd Colclaser [5], who develop a transient model for a tubular
OFC, Padulles et al. [6], who propose an integrated SOFC plant
ynamic for power systems simulation and Pukrushpan et al. [7],
ho develop physics-based dynamic models of proton exchange
embrane fuel cell (PEMFC).
One difficulty of physics-based low-order modeling is that when

hoosing which physical effects to include, it is often difficult to
alance between computational simplicity and physical fidelity. As

n alternative, many investigators adopt a data-based approach,
hich begins with data from either a high-order model or an exper-

ment and fits a low-order empirical model. For example, Yang
t al. [8] consider a modified Takagi-Sugeno fuzzy (TSF) modeling
r Sources 196 (2011) 208–217 209

and identification of an SOFC stack. Arriagada et al. [9] develop an
SOFC model based on an artificial neural network (ANN). Huo et
al. [10] develop a Hammerstein model consisting of a static non-
linear block followed in series by a dynamic linear block. Wang et
al. [11] consider a data-driven modeling approach for identifying
SOFC systems.

All the foregoing examples have limitations. In some cases, even
when nonlinear model structures were used, only static (steady-
state) models were considered. In other cases, transient models
are used, but they are only fit near a single OP. Such modeling
approaches are generally less useful for control because changes
in the required load on the SOFC stack cause both the steady-state
equilibrium and dynamic response to vary significantly at different
OPs.

Recent research by Hasikos et al. [12] for PEMFCs considers mul-
tiple OPs. They generate a steady-state database of manipulated and
controlled variables and then fit an ANN model to that database.
After static modeling, dynamic behavior is added to the model by
including a finite impulse response (FIR) model of the system at one
of the OPs. Chen et al. [13] present a multiple-model approach for
a PEMFC/ultracapacitor system. They use fuzzy clustering to char-
acterize and identify multiple linear models of the system, which
are selected based on operating conditions.

1.4. Prior control research

A variety of control approaches has been proposed for fuel cell
systems, ranging from simple linear state feedback controllers to
more advanced control techniques such as predictive controllers.
Li et al. [14] used a state feedback exact linearization approach.
Pukrushpan et al. [7] considered dynamic feedforward and state
feedback controllers along with the linear quadratic (LQ) method-
ology.

Several authors, including, Danzer et al. [15], Yang et al. [16],
Jurado [17], and Huo et al. [10] considered using MPC for fuel-cell
systems. MPC uses a system model and an online optimization
to calculate appropriate actuation commands. This is an attrac-
tive option for SOFC systems, because MPC can directly handle
constraints on both the input and output variables. However, in
most prior implementations of MPC, control is only demonstrated
around one particular OP.

Hasikos et al. [12] developed an integrated optimization and
control tool for PEMFC systems. After fitting a radial basis func-
tion (RBF) neural network model to a steady-state database, an
MPC methodology was designed based on a FIR model of the sys-
tem at one specific OP. This results in relatively poor transient
response with long rise time and/or output jitter when the system
is operated away from the nominal OP selected for FIR modeling.
Chen et al. [13] considered a multiple-model predictive controller
for a hybrid PEMFC system. In multiple-model MPC design, an
upper-layer adaptive switch is added that determines which of the
models should be used within each sampling period. However, the
implementation can be computationally expensive and switching
between linearized models can cause unintended perturbations.

1.5. The present approach

The present approach to control of the SOFC stack is to develop
an MPC controller based upon reducing a complex physical model
of the stack [1], with the low-complexity model being specifically
tailored for real-time optimization. The model reduction is based
ple linear models according to a so-called scheduling parameter.
A velocity implementation is used to ensure that only small-signal
information is applied to the linear models, thus assuring bumpless
transfer between OPs [18].
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ig. 2. System block diagram showing input–output allocation of the control struc-
ure. Note that the tubes in the SOFC stack are in a parallel configuration in regard
o the fuel and air, but in a series configuration electrically, so that the stack voltage
s the sum of the tube voltages.

Model reduction proceeds in two steps. In the first step, a set
f OPs is selected. At each OP the physical model is systematically
erturbed and the model response is recorded. A linear model can
e identified using the relationships between perturbations and
esponses. As discussed in the companion paper [1], the linear mod-
ls capture the small-signal behavior of the SOFC stack near the
elected OPs. This linear identification is followed by a second step
n which nonlinear scheduling functions are identified that mod-
late the outputs of the small-signal models in a manner similar
o gain scheduling. A particular contribution of the present paper
s a novel non-parametric approach for identifying the schedul-
ng functions. In the LPV scheme, one of the measurable output
ariables is considered to be the scheduling variable. Alternative
hoices for scheduling parameters, and combinations of schedul-
ng parameters, are investigated. An LPV-based MPC controller is
esigned, implemented, and tested. Controller performance is eval-
ated by controlling simulations based upon the detailed physical
odel while the MPC controller exploits the low-order fast model

f the stack in its online calculations. Several demand trajecto-
ies are evaluated, considering rapid transients in output power
hile satisfying constraints on cell voltage, fuel flow rate, and fuel
tilization.

. Control strategy

As illustrated in Fig. 2, the system-level control strategy is hier-
rchical, with MPC used at the highest level. The SOFC system is
omprised of the stack, shown on the right, and the BOP compo-
ents. Fig. 3 illustrates the interior structure of the BOP block, which
egulates voltage, fuel flow rate, and air flow rate. Since the tubes
cells) in the stack are connected electrically in series, the regulated
oltage is the sum of the individual tube voltages. Local servo con-
rollers are used to achieve desired set points in these variables.
t is assumed that sensors are available to measure cell current,
ydrogen mole fraction in anode exhaust, and temperature of the
athode-exhaust air.

As described in the companion paper [1], the physical model

epresents a widely disparate range of characteristic time scales.
lectrical response is essentially instantaneous (i.e., because elec-
rochemical double-layer charging is neglected, a change in
perating voltage causes an instantaneous change in current).
haracteristic response times for fluid flow and diffusion are on
Fig. 3. Balance of plant subsystems.

the order of one second or less. Characteristic times for thermal
response are much longer, on the order of minutes. Because of
relatively fast characteristic response times and strongly nonlin-
ear behavior, controlling electrical and exhaust characteristics is
more challenging than controlling the thermal behavior. The MPC
approach is particularly well suited to controlling the cell voltage
and fuel flow rate. Because of the slower thermal characteris-
tic times, a more traditional proportional-integral-derivative (PID)
controller is sufficient for temperature regulation.

2.1. BOP components

Although the uncontrolled dynamics of the BOP components
may be non-trival, because the BOP components are under servo
control, the relevant closed loop dynamics (that is, the dynamics
from a set-point to a physical variable, such as air flow) can be
simplified from the point of view of the stack controller. Specifically,
it is assumed that the closed loop dynamics can be approximated as
linear dynamical systems with first-order lag dynamics and unity
DC gain. For example, the fuel-flow subsystem is modeled as:

qd = �fuelq̇in + qin, (1)

where qd is the desired fuel flow rate, �fuel is the time constant
associated with the fuel-flow subsystem, and qin is the fuel flow
rate command that is supplied to the BOP. Analogous first-order
dynamics are considered for the air-flow subsystem. Because the
dynamics of the cell-voltage subsystem are very fast, it can be rep-
resented simply as a unit gain. The BOP control is not discussed
further in the present paper.

3. Stack modeling

This paper concentrates primarily on the SOFC stack dynamics,
which is more complicated than the BOP dynamics. The SOFC stack
physical model is discussed in the companion paper [1]. The exam-

ples that follow in the present paper are based upon a particular
tubular stack configuration. The tubes are 15 cm long with an out-
side diameter of 1 cm, which is typical of tubes that may be used
in sub-kilowatt APUs. A table of model parameters that describe
physical and electrochemical characteristics may be found in the
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Fig. 5. Input–output map from steady-state simulation. (a) Steady-state input map.
Fig. 4. LPV model structure for low-order representation.

ompanion paper [1]. For purposes of illustrating the model, the
ost-reformer SOFC inlet fuel composition is assumed to be 38%
2, 3% H2O, 1% CH4, 19% CO, 0.3% CO2, and 38% N2. This is the equi-

ibrium mixture that results from the partial oxidation of methane
nd air at 800 ◦C with a stoichiometric ratio to partial oxidation (i.e.,
xygen to carbon ratio of 0.5), to which a small amount of steam
s added to bring the steam composition to 3%. The steam is added
o prevent carbon deposition in the fuel cell stack. Fuel enters the
ube at 800 ◦C and atmospheric pressure. The cathode air, which
ows around the outsides of the tubes, enters the stack at 550 ◦C.
oth ends of the tubes conduct heat to the manifolds at a fixed
emperature of 800 ◦C.

A typical stack can consist of 50–100 tubes, usually connected
lectrically in series, which is the case here. The modeling assumes
n ideal stack in which all tubes behave exactly alike. Thus, net
tack power and flow rates are determined from a single tube sim-
ly by multiplying the results of the single-tube model. The series
onnection implies that the current through all tubes is the same,
hile the stack voltage is the sum of the voltage across each tube. In

ctual operation, the system deviates from this ideal stack behavior,
s the tubes are exposed to slightly different conditions. However,
he idealized model is still valuable for control, as it represents the
ehavior of an “average” tube in the stack.

The process for obtaining the reduced-order model is twofold.
irst, a set of OPs is selected and locally linear models at each OP
re identified to model small-signal behavior. The linear models
re then combined, with redundant modes being eliminated via
inear model reduction. In the second step, nonlinear functions are
dentified that modulate the outputs of the small-signal models in a

anner similar to gain scheduling. The nonlinear functions depend
pon a scheduling parameter that is assumed to be measurable
e.g., cell current).

Fig. 4 illustrates the LPV model structure, where uk and yk are
he input and output at sampling interval k, and z is the forward
hift operator. The locally linear systems, Gi(z), capture the small-
ignal behavior at m different OPs. The system G(z) represents the
ombined model after eliminating any redundant modes shared
etween the m different linear models. The variable � is a schedul-

ng parameter that is a function of the (measured) system output,
nd fi(�) represent gains that are nonlinear functions of �. Because
ach of the linear models captures only small-signal behavior, the
P needs to be removed at the input, and added back at the output.
so-called velocity implementation accomplishes this by applying
first difference (1 − z−1) of the input, and integrating (1 − z−1)−1

he output.
.1. OP selection

For expected ranges of stack operation, it is desired to pick a few
Ps whose dynamics can be used to span the the entire operating

pace. To select such points, a series of steady-state simulations
(b) Steady-state output map.

with different input values are recorded. Fig. 5 illustrates an input
map and the resulting output map. In these simulations, cell voltage
ranges from 0.65 V to 0.85 V in steps of 0.01 V. At each cell voltage,
fuel flow changes between 2.5 mg s−1 (velocity = 0.247 m s−1) and
12 mg s−1 (velocity = 1.19 m s−1). The corresponding steady-state
outputs define a region in which, roughly speaking, cell current
changes between 10 A (per tube) to 55 A (per tube) and H2 concen-
tration in exhaust varies from 0 to 35%.

The practical operating space should be more restricted than
the potential operating space shown in Fig. 5. To achieve high effi-
ciency and to minimize cell damage, the cell voltage should be
limited as 0.67 ≤ Ecell ≤ 0.79. Because of a need for fuel into the
tail-gas combustor for cathode-air preheating (Fig. 1) and to limit
deleterious reoxidation of the SOFC anode, fuel utilization should
be in the range of 70–90%. In the present simulations, this limita-
tion corresponds to maintaining hydrogen in the anode exhaust as
3% < XH2 < 11%. The combination of these considerations limit the
cell current (per tube) as 13 A < Icell < 35 A.

The practical limitations in the steady-state output space are
illustrated in Fig. 5b as a shaded rectangle. Six OPs are selected
(shown as large red dots) along the output boundaries to represent
the operating space. The selected output space is mapped back to
the input space with corresponding markers in Fig. 5a. The selected
OPs along with their corresponding output values are also listed in
Table 1(a) and (b), respectively. In the following sections, a linear

dynamic model is identified at each operating point, and scheduling
functions are identified that blend the linearized dynamics between
operating points.
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Table 1
Selected OPs data.

OP num. Cell voltage (V) Fuel flow (mg s−1)

(a) Input data
1 0.78 2.5
2 0.77 3.85
3 0.72 3.85
4 0.74 5.20
5 0.69 5.20
6 0.69 6.55

OP num. Cell current (A) H2 (mole fraction)

(b) Output data
1 14.51 0.047
2 19.07 0.096
3 23.10 0.032
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4 24.96 0.102
5 30.31 0.038
6 34.31 0.070

.1.1. Identification of linear models
At each OP in Table 1(a), a linear dynamic model is identified

hat captures the dominant small-signal dynamics at that point.
his can be accomplished using linearization followed by model
eduction. However, the present approach uses the data-based
odel reduction method discussed in the companion paper [1]. The

ata-based identification is accomplished with a series of straight-
orward simulations, and is essentially independent of complexity
n the underpinning physical model. Transient simulations in which
he input variables are systematically perturbed provides the data
rom which the reduced-order is obtained. The input variables are
ell voltage, fuel mass flow rate, and air mass flow rate. The output
ariables are cell current, hydrogen mole fraction in anode exhaust,
nd cathode-exhaust air temperature. The sampling time of the
erturbations is Ts = 0.125 s, which is also the sampling time of the
ontroller that is being designed. To take advantage of possible
epeated modes between different OPs, the small-signal models are
ssembled into a single model, as illustrated in Fig. 6. Thus, the out-
ut of the identified system may be written as ıy = [ıy1 ıy2 · · · ıym]
here ıyi is the small-signal response of the system at OPi.

.2. Identification of scheduling functions

Using the results of the previous section, the small-signal mod-
ls, Gi(z) (i = 1, 2, . . ., m), are available for m = 6 different OPs. In
ther words, each Gi(z) captures the small-signal behavior for one
alue of the scheduling parameter, �. A set of scheduling functions

i(�) (i = 1, 2, . . ., m) is needed to match the overall system response
o large-signal variations. As shown in Fig. 4, the functions fi(�) are
eighting factors that combine the outputs of the linearized mod-
ls. This means that fi(�) describes how closely model i describes
he model dynamics at scheduling point �, and thus can be thought
f as a correlation metric between the current operating condition
nd operating point i.

Fig. 6. Combined linear model at multiple OPs.
Fig. 7. A postulated scheduling function fi(�).

As an alternative to developing a parameterized basis expan-
sion of fi(�), estimates of fi(�) can be found directly in terms of the
function values. Specifically, the scheduling parameter � is quan-
tized into a fixed number of “bins” with centers �̄j(j = 1, 2, . . . , �),
with the objective being to estimate the values for fi(�̄j) for all i,
j as illustrated schematically in Fig. 7. In other words, the set of
values fi(�̄j) for all i, j are parameters to be identified. Note that �
can be much larger than m. Once the values of fi(�̄j) are found, the
functions fi(�) can be represented by an appropriate interpolation.
Given a measured scheduling sequence �k, the quantized schedul-
ing sequence �̄k is established such that for all k, �̄k = �̄j for some j,
and the Euclidean norm ‖�k − �̄k‖ is minimized.

Because the small-signal models Gi(z) are known for i = 1, 2, . . .,
m, the signals

ıyi
k = Gi(z)(1 − z−1)uk (2)

can be calculated, where uk are the actuation inputs used in the
simulations. The simulation outputs yk and quantized scheduling
sequence �̄k are also known. The objective is to select values of fi(�̄j)
such that ıyk ≈ ıŷk, where ıyk is the first difference of the measured
output

ıyk = (1 − z−1)yk, (3)

and

ıŷk =
m∑

i=1

fi(�̄k)ıyi
k. (4)

In other words, the objective is to find

argmin
fi(�̄j)

N∑
k=1

‖ıyk − ıŷk‖2, (5)

so that the scheduling functions blend the small-signal models to
best match the observed output. However, without placing restric-
tions on fi(�̄j), the minimization problem is under-determined,
meaning that many different functions can make the objective
function equal zero. Thus, constraints are required. The imposed
constraints are natural choices. One set of constraints come
from the definition of the scheduling functions: they must range
between 0 and 1 (0 ≤ fi(�̄j) ≤ 1), and the sum of the scheduling
functions over i for any �̄j must always be unity (

∑m
i=1fi(�̄j) = 1).

Moreover, the value of each scheduling function at its correspond-
ing OP should be equal to unity, i.e. fi(�̄j = �i) = 1, where �i is the
value of �̄j that corresponds to the OP for system Gi(z). However, the
optimization problem is still under-determined. Including a regu-
larization term in the objective function solves the problem. This

term makes the identified functions sufficiently smooth. As intro-
duced by Hsu et al. [19], a dispersion function is used as a measure
of smoothness for the non-parametric identification of nonlinear
systems. The dispersion function is a smoothness measure for func-
tions that are described point-wise, and is closely related to total
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By solving the optimization problem as described by Eq. (7),
six scheduling functions are identified. Fig. 10 illustrates the six
scheduling functions where cell current is used as the scheduling
parameter. A value of ˇ = 1 is used. As required by the constraints,
Fig. 8. Large-sign

ariation. It can also be extended to multi-dimensional functions,
ut for simplicity it is restricted here to scalar �̄. Given a point-wise
escription of a function in terms of points (�̄j, f (�̄j)), the dispersion
f f is defined as

(f (�̄j)) =
�−1∑
j=1

L2
j , (6)

here Lj are the lengths of a linear interplant of (�̄j, f (�̄j) (Fig. 7). The
ispersion is a quadratic function of the values of fi(�̄j). Adding the
onstraints and adding the smoothness measure to the objective
unction, the optimization problem can be written as

min
fi(�̄j)

N∑
k=1

‖ıyk − ıŷk‖2 + ˇ

m∑
i=1

� (fi(�̄
j))

subject to 0 ≤ fi(�̄j) ≤ 1,
m∑

i=1

fi(�̄
j) = 1,

fi(�i) = 1,

(7)

here ˇ is a user-defined parameter that can be varied to affect
he smoothness of the scheduling functions. Because the disper-
ion is a quadratic function of fi(�̄j), Eq. (7) is a convex optimization
roblem that can be easily solved using modern optimization pack-
ges as a second order cone problem. The results in this paper for
mplementing the LPV algorithm were obtained using CVX [20,21]
oolbox in the computational software Matlab. By solving the opti-

ization problem, the values of the scheduling functions fi(�̄j) are
alculated for all i, j that minimize a weighted sum of the fit error
nd the dispersion, subject to the constraints.

By augmenting the linear state-space representation with the
ast input and output (uk−1 and yk−1), the final result is a
arameter-varying state-space model of the form

uk

xk+1
yk

]
=
[

0 0 0
−� ˚ 0

−D(�) C(�) I

][
uk−1

xk

yk−1

]
+
[

I
�

D(�)

]
uk, (8)

here

(�) = [f1(�) f2(�) · · · fm(�)]C, (9)
(�) = [f1(�) f2(�) · · · fm(�)]D, (10)

nd (˚, � , C, D) are state-space matrices associated with the
ynamics of the combined model G(z).
ation simulation.

3.2.1. LPV-based nonlinear identification
Consider an example to illustrate the use of an LPV scheme for

the nonlinear system identification of the SOFC stack. Cell current is
chosen as the scheduling parameter. Using other output variables,
or combinations of output variables, as the scheduling variable is
discussed in the following section. The stack OPs are specified by
two input variables, cell voltage and fuel flow rate. To transition
between different OPs, a transient simulation is designed in which
the output variables vary greatly within the acceptable operating
space (Fig. 5). Fig. 8a and b shows the temporal variation of the
input signals fuel flow rate and cell voltage. Fig. 8c and d shows
the corresponding output responses for cell current and H2 in the
anode exhaust. To assist understanding how large-signal variations
move within the region defined by selected OPs, Fig. 9 illustrates
the changes in input and output spaces.
Fig. 9. Large-signal simulation. (a) Variation in input space over selected OPs. (b)
Variation in output space over selected OPs.
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the scheduling functions that are estimated when using hydrogen
in the anode exhaust as the scheduling parameter. It is also possible
to use more than one variable for scheduling. For instance, a combi-
nation of both cell current and exhaust hydrogen can be considered.
ig. 10. Identified scheduling functions using cell current as the scheduling variable.

he function values all satisfy 0 ≤ fi(�) ≤ 1, and at each value of cell
urrent

∑
ifi(�) =1. Because the OPs are labeled in the order of cell

urrent (Table 1(b)), the functions have peaks in order from f1(�) to
6(�) as the output current (i.e., �) increases. For example, because
P2 has an output current of about 20 A, at � ≈ 20 A all the functions
re nearly zero except f2(�).

Within the LPV structure, the integrator is modified by adding a
imple error-correction term (predictor) as

˜k = ỹk−1 + ıŷk + L(yk−1 − ỹk−1), (11)

here ỹk is the output of the LPV model, yk is the output of the actual
ystem (here the physical model) and ıŷk is calculated as in Eq.
4). The objective is to reduce error accumulation in the integrator.
ince the model is intended to be used for real-time control, the
alue of the system output yk−1 is available from actual sensors,
r sensor inferences. In Eq. (11), the prediction parameter L is a
ree parameter, which can be chosen based on the length of the
xperiment and the output variable. A value of 0.05 is chosen in
he results presented here.

The fidelity of the reduced-order models can be evaluated by
irect comparison with the detailed physical model. Fig. 11 shows
he results of both the low-order identified model and the full phys-
cal model, both being driven by the input transients shown in
ig. 8a and b. To within the thickness of the lines, the two mod-
ls produce essentially indistinguishable results. The LPV method,
ased on smooth combinations of small-signal linear models, deliv-
rs an excellent representation of the nonlinear physical behavior
ver wide ranges of operating conditions.
.3. Selection of scheduling variable

Although cell current was used as the LPV scheduling parameter
n the previous example, it is not the only choice. Fig. 12 illustrates
Fig. 11. Comparison between outputs from physically based high-order model and
the LPV-based low-order model over a wide range of operation. The results are
essentially indistinguishable.
Fig. 12. Identified scheduling functions with H2 mole fraction in anode exhaust as
the scheduling variable.
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ig. 13. Two-dimensional scheduling function as identified using cell current and
xhaust H2 as the scheduling variables at OP1. The function f1(�1, �2) ≈ 1 is highest
n the left-lower corner, which corresponds to the cell current and exhaust H2 for
P1.

n this case, the scheduling functions fi(�1, �2) are two-dimensional
unctions which must be identified by solving a slightly-modified
ptimization problem, specifically, two-dimensional dispersion
unctions are employed as described in [19]. Intuitively, one might
xpect that the extended approach would deliver a higher fidelity
dentification, and thus improve performance of the reduced

odel. Fig. 13 is a two-dimensional contour representation of f1(�1,
2) corresponding to OP1 (Table 1(b)), where both cell current
nd exhaust hydrogen are the scheduling variables. The schedul-
ng function is essentially unity (i.e., f1(�1, �2) ≈ 1) in the left lower
orner, which corresponds to the values of cell current and exhaust
2 around OP1. Performance at other OPs is similar.

Based on the simulation results for the present problem, there
s little, if any, benefit in using the two-dimensional scheduling.
able 2 shows the root-mean-square (RMS) error associated with
he alternative scheduling approaches. It is interesting to note
hat scheduling based on current provides a slightly better result
han scheduling with exhaust hydrogen. Based on these results, it
ppears that the two scheduling variables are correlated. Thus, for
OFC stack control, cell current is preferable because it is much
asier to measure in practice.

. Model predictive control

The need to maintain signal constraints during operation,
ombined with the importance of unmeasured variables such as

nternal stack temperature or fuel utilization, indicate the need
or advanced control strategies. Because of these important oper-
ting considerations, as well as the strong interaction between
nput variables, MPC is a natural choice for control implementa-
ion. MPC provides a means to incorporate quantitative physical

able 2
omparison between different scheduling approaches.

Scheduling variable RMS error (%)

Cell current alone 0.16504
Exhaust H2 alone 0.17632
Cell current and exhaust H2 0.16121
r Sources 196 (2011) 208–217 215

understanding into real-time process-control decisions. The SOFC
stack is a complex nonlinear system, with widely disparate ranges
of characteristic time scales. Moreover, there are multiple actua-
tion possibilities and a variety of possible sensors. It is a challenging
task to design and implement a control strategy that achieves opti-
mal performance through the coordination of multiple sensors and
actuators.

The MPC design is accomplished in two distinct parts: (1) esti-
mate the current system state from observations of past inputs u
and outputs y, and (2) establish future actuation trajectories u to
guide the system through a desired output trajectory.

4.1. State estimation

Assume that the process started at time k = 0, and the current
time is k = k0. The first task of an MPC controller is to use recorded
sensor measurements yk (k = 0, 1, . . ., k0) to determine an estimate
for the current state of the plant, xk0

. Because actuation commands
are also recorded over time, the input–output information (uk,
yk) (k = 0, 1, . . ., k0) is available at time k0. At any time step k, the
differences in actuation commands and output measurements can
be calculated as ıuk = uk − uk−1 and ıyk = yk − yk−1, respectively. The
current state xk0

can be estimated by solving the following opti-
mization problem:

min
xk

(
k0∑

k=0

‖ek‖2 +
k0−1∑
k=0

‖wk‖2

)
, (12)

where

ek = Re
[
ıyk −

(
C
(

�
)

xk + D
(

�
)

ıuk

)]
, (13)

wk = Q e
[
xk+1 −

(
˚xk + �ıuk

)]
, (14)

and Qe and Re are weighing matrices. The state-estimation pro-
cess can be interpreted as follows: (1) find the state sequence
x̂k (k = 0, 1, . . . , k0) that minimizes a weighted combination of the
error ek between the (small-signal) measurements (sensors) and
the model outputs and the adjustment term wk, needed to match
the dynamic updates, and (2) take the last element of the state
sequence x̂k as the current state of the plant, x̂k0

. The error (ek, Eq.
(13)) can be interpreted in the context of the reduced-order model
(Eq. (8)). At each scheduling variable value �, the sensors measure
the difference in output between two successive steps as ıyk while
the model predicts the difference as C(�)xk + D(�)ıuk. The adjust-
ment wk is the difference between the state xk+1 at the next step
and model-predicted state at the next step, ˚xk + � ıuk.

The relative weighting matrices Qe and Re can be chosen based
upon engineering judgment, or they can be chosen based on a
stochastic model for measurement errors and disturbances. In
either case, state estimation is a quadratic optimization problem. If
the system is observable, the minimizer is unique. In this example,
Qe and Re are scaled identity matrices as Re = 0.1Ip and Qe = In where
p is the number of outputs and n is the number of states. The size of
optimization problem (Eq. (12)) grows significantly as k0 increases.
Fortunately, the Kalman filter can implement the estimation pro-
cess recursively [22]. That is, a gain sequence Kk can be calculated
such that the output of the system,

x̂k+1 = ˚x̂k + �uk + Kk[ıyk − (C(�)xk + D(�)ıuk)], (15)

produces the same sequence of estimates for x̂k.
4.2. Control

The role of control is to choose future actuation that guides the
system according to a desired trajectory. Assume that a desired
output trajectory can be specified as yd

k
for k = k0, . . ., k0 + p. The
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Fig. 14. (a) Comparison between the desired cell current and the cell current deliv-
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ontrol is chosen to best match the desired output trajectory over
look-ahead horizon of p sampling intervals, while meeting fixed

onstraints on input and output excursions. At every time k0 the
urrent state x̂k0

is estimated according to the foregoing optimiza-
ion problem (i.e., Eq. (12)) and the system output at time k0 is

easured. After choosing weighting matrices Rc and Qc and con-
traints bui and byi, the following optimization problem is solved:

min
uk

k0+p∑
k=k0

‖Rc(yd
k − yk)‖1 + ‖Q cuk‖1

subject to xk+1 = (˚xk + �uk)
yk = C(�)xk + D(�)ıuk + yk−1

bu1 < uk < bu2
by1 < yk < by2

(16)

nd the first element uk0
of the optimal sequence uk (k = k0, k0 + 1,

. ., k0 + p) is applied as the plant input (control law) for the next
ime interval. In the example that follows, the horizon is cho-
en as p = 12. For a sampling interval of Ts = 0.125 s, the horizon is
.5 s. Weighting matrices Qc and Rc are square diagonal matrices
ith different weights for different input and output variables. In

his example, Q c = diag([ 2.5 × 107 103 ]) where 2.5 × 107 is the
eight on fuel flow rate and 103 is the weight on cell voltage, and

c = diag([ 30 200 ]) where 30 is the weight on cell current and
00 is the weight on exhaust H2.

.3. Controller performance

To evaluate performance, an MPC controller is used to control
he physical SOFC model through a specified transient trajectory of
esired output current, while also satisfying constraints. The con-
roller uses the low-order LPV-based model for state estimation
nd actuation sequences. Fig. 14a shows both the desired current
rajectory and the achieved cell current using the MPC controller.
t this scale, the two curves are nearly indistinguishable. Fig. 14b

s an expanded graph over a short time interval that reveals some
mall differences between the desired and achieved cell-current
istories. The desired current spans a significantly wide range,
ver which the physical behavior is strongly nonlinear. Although
ear step-changes in the desired current trajectory, some small

vershoots are present, the MPC controller is delivering excellent
erformance.

In addition to achieving the desired cell-current trajectory
Fig. 14), the controller is able to respect constraints on the input
nd output variables. Fig. 15a and b shows the controlled input

ig. 15. MPC controlled input commands and model-predicted responses. Pre-specified
ontroller-commanded fuel flow rate. (c) Hydrogen mole fraction in the anode exhaust. (
ered by the MPC controller. At this scale, the controlled result is essentially within
a line thickness of the desired current. (b) An expanded section of the trajectory,
revealing some small differences between desired and achieved cell current.

variables. In actual operation, the manipulated voltage is the sum
of the voltages across each cell, but here the “average” cell voltage,
or total voltage divided by number of cells, is reported. The con-
troller maintains the commanded cell voltage and fuel flow rate
within the defined bounds (shown as the dashed lines). Cathode-
air inlet flow rate is also controlled. However, for the short time
interval shown in Fig. 15, it is essentially unchanged. Fig. 15c and
d show the output variables. The anode-exhaust hydrogen mole
fraction remains in the desired pre-specified bounds. Because of
long thermal time constants, the cathode-exhaust air temperature

varies relatively little over the short 40 s time interval.

These results show that the MPC controller provides excellent
performance over a very demanding cell-current trajectory. More-
over, the controller meets the load demand, while also respecting

bounds are shown with dashed lines. (a) Controller-commanded cell voltage. (b)
d) Cathode-air exhaust temperature.
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onstraints on input and output variables. Qualitatively, the con-
roller is making some anticipated decisions. For example, when
he load decreases at around 5 s, the cell voltage increases and the
uel flow rate decreases. As the load demand increases, the cell volt-
ge decreases and fuel flow rate increases. However, it would be
ifficult, if not impossible, to achieve the complex set of controller
ommands with less capable control strategies such as a PID regula-
or. Moreover, controllers such as PID are not capable of respecting
nput and output constraints.

. Summary and conclusions

A systematic approach is used to incorporate physical knowl-
dge into the control of an SOFC stack. The process begins with
transient, high-fidelity, physical model. Such models, are too

omputationally expensive to be considered for direct incorpora-
ion into real-time control. Reduced-order locally linear models
re required. However, the reduced models must be predictive
ver wide operating ranges, and thus capture nonlinear behav-
ors. Model reduction here is accomplished using an LPV structure.
esults show that by smoothly scheduling between operating con-
itions, nonlinear behaviors can be adequately represented by
ombinations of low-order locally linear models. At certain steady-
tate OPs that span the expected operating space, locally linear
odels are identified by systematic perturbations of the high-order

hysical model. An MPC controller is designed and implemented
ased on the reduced-order models. In addition to meeting load-
emand transients, the MPC controller can also be designed to

atisfy constraints on actuation commands (e.g., cell voltage and
uel flow rate) and on output responses (e.g., fuel utilization). To
valuate performance, the LPV-based MPC controller is used to con-
rol the physically based high-order model. Although scheduling
etween low-order linear models can depend upon multiple out-

[
[

r Sources 196 (2011) 208–217 217

put variables, results show that scheduling based on the cell current
alone provides excellent results.
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